Ice Lounge Media

Ice Lounge Media

This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.

What’s next for NASA’s giant moon rocket?

NASA’s huge lunar rocket, the Space Launch System (SLS), might be in trouble. As rival launchers like SpaceX’s Starship gather pace, some are questioning the need for the US national space agency to have its own mega rocket at all—something that could become a focus of the incoming Trump administration, in which SpaceX CEO Elon Musk is set to play a key role.

SLS has been in development for more than a decade. The rocket is huge, and about 15% more powerful than the Saturn V rocket that took the Apollo astronauts to the moon in the 1960s and 70s. It is also expensive, costing an estimated $4.1 billion per launch.

It was designed with a clear purpose—returning astronauts to the moon’s surface. And while it seems likely the rocket will at least launch Artemis II next September, beyond that its future is less certain. Read the full story.

—Jonathan O’Callaghan

This piece is part of MIT Technology Review’s What’s Next series, looking across industries, trends, and technologies to give you a first look at the future. You can read the rest of them here.

This startup is getting closer to bringing next-generation nuclear to the grid

This is a busy time of year for all of us, and that’s certainly true in the advanced nuclear industry.

MIT Technology Review released our list of 15 Climate Tech Companies to Watch less than two months ago. Since then, awardee Kairos Power has had three big announcements about its progress toward building next-generation nuclear reactors. 

Each of these bits of news represents an interesting aspect of the process. So let’s dig into the announcements and what they mean for where nuclear technology is going. Read the full story.

—Casey Crownhart

This story is from The Spark, our weekly newsletter giving you the inside track on all things climate and energy. Sign up to receive it in your inbox every Wednesday.

The must-reads

I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

1 A Chinese ship may have sabotaged critical data cables
By dragging its huge anchor along the Baltic seabed for over 100 miles. (WSJ $)+ Swedish authorities are investigating the bulk carrier. (FT $)

2 The FTC is probing Microsoft
It’s a wide-ranging antitrust investigation into its cloud computing, AI and security arms. (NYT $)+ The FTC has been preparing for this for a full year. (WP $)
+ It’s notable it’s been signed off in the Biden administration’s dying days. (The Information $)
+ Meanwhile, Google is hoping to have its recent antitrust ruling thrown out. (Bloomberg $)

3 RFK’s ‘Make America Healthy Again’ movement is in trouble
Just days into the project, cracks are already beginning to show. (FT $)
+ The MAGA policy agenda is extremely skeptical of actual scientific evidence. (NYT $)+ America’s opioid crisis probably played a role in Trump’s reelection. (New Yorker $)

4 TikTok is blocking beauty filters for teenagers
But the restrictions aren’t exactly difficult to circumvent. (The Guardian)
+ Filters will be required to specify the nature of the tweaks they make, too. (The Verge)
+ The fight for “Instagram face.” (MIT Technology Review)

5 Who is applying to join Elon Musk’s DOGE?
Everyone from students to tech CEOs, apparently. (Forbes $)
+ The division is highly likely to clash with the US government’s budget office. (WSJ $)

6 Interpol has arrested 1,000 potential cyber criminals across Africa
They’re suspected of extorting victims using ransomware, phishing schemes and scams. (WP $)

7 Here’s all the tariffs China’s tech industry is facing
It’s not just the US that’s increasing its restrictions. (Rest of World)+ Buckle up: China is likely to face even greater chip restrictions from next week. (Wired $)
+ How Trump’s tariffs could drive up the cost of batteries, EVs, and more. (MIT Technology Review)

8 Mark Zuckerberg has been hobnobbing with Donald Trump at Mar-a-Lago
Which is interesting considering that Trump has threatened him with life imprisonment. (The Information $)
+ Zuckerberg has been on a charm offensive to repair their relationship for almost two years. (NYT $)
+ But the President-elect has a history of holding grudges. (NY Mag $)

9 Distributed computing is the next big thing
We can achieve more when we work together, after all. (Quanta Magazine)

10 How those massive Macy’s Thanksgiving parade balloons stay afloat 🎈
The greater the mass, the greater the weight. (Wired $)

Quote of the day

“The main advice I have to give is stay true to yourself and hit post.”

—TikToker Leah Halton dispenses some sage advice after winning an award for video of the year at Australia’s TikTok awards, the Guardian reports.

The big story

A day in the life of a Chinese robotaxi driver

July 2022

When Liu Yang started his current job, he found it hard to go back to driving his own car: “I instinctively went for the passenger seat. Or when I was driving, I would expect the car to brake by itself,” says the 33-year-old Beijing native, who joined the Chinese tech giant Baidu in January 2021 as a robotaxi driver.

Liu is one of the hundreds of safety operators employed by Baidu, “driving” five days a week in Shougang Park. But despite having only worked for the company for 19 months, he already has to think about his next career move, as his job will likely be eliminated within a few years. Read the full story.

—Zeyi Yang

We can still have nice things

A place for comfort, fun and distraction to brighten up your day. (Got any ideas? Drop me a line or tweet ’em at me.)

+ If you’ve ever admired the incredible Co Rentmeester picture of Michael Jordan leaping through the air, here’s the story behind the iconic image.
+ If you look to the skies in Alaska, you might just see a Thanksgiving turkey being thrown out of a plane.
+ Talking of Thanksgiving, if you want to cook the ultimate turkey, look no further.
+ Move over, the hot artists are coming.

Read more

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

This is a busy time of year for all of us, and that’s certainly true in the advanced nuclear industry.

MIT Technology Review released our list of 15 Climate Tech Companies to Watch less than two months ago. Since then, awardee Kairos Power has had three big announcements about its progress toward building next-generation nuclear reactors. 

Each of these bits of news represents an interesting aspect of the process. So let’s dig into the announcements and what they mean for where nuclear technology is going.

First, a quick refresher on Kairos Power: While nuclear plants today overwhelmingly use pressurized water to keep reactors cool, Kairos is using molten salt. The idea is that these reactors (which are also smaller than those typically built today) will help generate electricity in a way that’s safer and more efficient than conventional nuclear power.

When it comes to strategy, Kairos is taking small steps toward the ultimate goal of full-size power plants. Construction began earlier this year on Hermes, the company’s first nuclear test reactor. That facility will generate a small amount of heat—about 35 megawatts’ worth—to demonstrate the technology.

Last week, the company announced it received a construction permit for the next iteration of its system, Hermes 2. This plant will share a location with Hermes, and it will include the infrastructure to transform heat to electricity. That makes it the first electricity-producing next-generation nuclear plant to get this approval in the US.

While this news wasn’t a huge surprise (the company has been working with the Nuclear Regulatory Commission for years), “any day that you’re getting a permit or a license from the NRC is an unusual and special day,” Kairos CEO Mike Laufer told me in an interview.  

The company is developing a plan to work on construction for both Hermes and Hermes 2 at the same time, he added. When I asked if Hermes is still on track to start up in 2027 (as we reported in our profile of the company in October), Laufer said that’s an “aggressive timeline.”

While construction on test reactors is rolling, Kairos is forging ahead with commercial deals—in October, it announced an agreement with Google to build up to 500 megawatts’ worth of power plants by 2035. Under this agreement, Kairos will develop, construct, and operate plants and sell electricity to the tech giant.

Kairos will need to build multiple reactors to deliver 500 MW. The first deployment should happen by 2030, with additional units to follow. One of the benefits of building smaller reactors is learning as you go along and making improvements that can lower costs and make construction more efficient, Laufer says. 

While the construction permit and Google deal are arguably the biggest recent announcements from Kairos, I’m also fascinated by a more niche milestone: In early October, the company broke ground on a salt production facility in Albuquerque, New Mexico, that will make the molten salt used to cool its reactors.

“Salt is one of the key areas where we do have some unique and specialized needs,” Laufer says. And having control over the areas of the supply chain that are specialized will be key to helping the company deliver electricity reliably and at lower cost, he adds. 

The company’s molten salt is called Flibe, and it’s a specific mix of lithium fluoride and beryllium fluoride. One fun detail I learned from Laufer is that the mixture needs to be enriched in lithium-7 because that isotope absorbs fewer neutrons than lithium-6, allowing the reactor to run more efficiently. The new facility in Albuquerque will produce large quantities of high-purity Flibe enriched in lithium-7.

Progress in the nuclear industry can sometimes feel slow, with milestones few and far between, so it’s really interesting to see Kairos taking so many small steps in quick succession toward delivering on its promise of safe, cheap nuclear power. 

“We’ve had a lot of huge accomplishments. We have a long way to go,” Laufer says. “This is not an easy thing to pull off. We believe we have the right approach and we’re doing it the right way, but it requires a lot of hard work and diligence.”


Now read the rest of The Spark

Related reading

For more details on Kairos and its technology, check out our profile of the company in the 15 Climate Tech Companies to Watch package from October. 

If you’re dying for more details on molten salt, check out this story I wrote in January about a test system Kairos built to demonstrate the technology. 

""

STEPHANIE ARNETT/MIT TECHNOLOGY REVIEW | GETTY, ADOBE STOCK

Another thing

Donald Trump pledged to enact tariffs on a wide range of products imported into the US. The plans could drive up the cost of batteries, EVs, and more, threatening to slow progress on climate and potentially stall the economy. Read more about the potential impacts for technology in the latest story from my colleague James Temple

Keeping up with climate  

The UN climate talks wrapped up over the weekend. In the resulting agreement, rich nations will provide at least $300 billion in climate finance per year by 2035 to developing nations to help them deal with climate change. (Carbon Brief)
→ This falls well short of the $1 trillion mark that many had hoped to reach. (MIT Technology Review)

Utilities might be spending a lot of money on the wrong transmission equipment on the grid. Dollars are flowing to smaller, local projects, not the interstate projects that are crucial for getting more clean energy online. (Inside Climate News)

Sustainable aviation fuel is one of the only viable options to help clean up the aviation industry in the near term. But what are these fuels, exactly? And how do they help with climate change? It’s surprisingly complicated, and the details matter. (Canary Media)

Automakers want Trump to keep rules in place that will push the US toward adoption of electric vehicles. Companies have already invested billions of dollars into an EV transition. (New York Times)

There’s a growing chasm in American meat consumption: The number of households that avoid meat has increased slightly, but all other households have increased their meat purchases. (Vox)

Trump has vowed to halt offshore wind energy, but for some projects, things take so long that a four-year term may not even touch them. (Grist)

Read more

MIT Technology Review’s What’s Next series looks across industries, trends, and technologies to give you a first look at the future. You can read the rest of them here.

NASA’s huge lunar rocket, the Space Launch System (SLS), might be in trouble. As rival launchers like SpaceX’s Starship gather pace, some are questioning the need for the US national space agency to have its own mega rocket at all—something that could become a focus of the incoming Trump administration, in which SpaceX CEO Elon Musk is set to play a key role.

“It’s absolutely in Elon Musk’s interest to convince the government to cancel SLS,” says Laura Forczyk from the US space consulting firm Astralytical. “However, it’s not up to him.”

SLS has been in development for more than a decade. The rocket is huge, 322 feet (98 meters) tall, and about 15% more powerful than the Saturn V rocket that took the Apollo astronauts to the moon in the 1960s and 70s. It is also expensive, costing an estimated $4.1 billion per launch.

It was designed with a clear purpose—returning astronauts to the moon’s surface. Built to launch NASA’s human-carrying Orion spacecraft, the rocket is a key part of the agency’s Artemis program to go back to the Moon, started by the previous Trump administration in 2019. “It has an important role to play,” says Daniel Dumbacher, formerly a deputy associate administrator at NASA and part of the team that selected SLS for development in 2010. “The logic for SLS still holds up.”

The rocket has launched once already on the Artemis I mission in 2022, a test flight that saw an uncrewed Orion spacecraft sent around the moon. Its next flight, Artemis II, earmarked for September 2025, will be the same flight but with a four-person crew, before the first lunar landing, Artemis III, currently set for September 2026.

SLS could launch missions to other destinations too. At one stage NASA intended to launch its Europa Clipper spacecraft to Jupiter’s moon Europa using SLS, but cost and delays saw the mission launch instead on a SpaceX Falcon Heavy rocket in October this year. It has also been touted to launch parts of NASA’s new lunar space station, Gateway, beginning in 2028. The station is currently in development.

NASA’s plan to return to the moon involves using SLS to launch astronauts to lunar orbit on Orion, where they will rendezvous with a separate lander to descend to the surface. At the moment that lander will be SpaceX’s Starship vehicle, a huge reusable shuttle intended to launch and land multiple times. Musk wants this rocket to one day take humans to Mars.

Starship is currently undergoing testing. Last month, it completed a stunning flight in which the lower half of the rocket, the Super Heavy booster, was caught by SpaceX’s “chopstick” launch tower in Boca Chica, Texas. The rocket is ultimately more powerful than SLS and designed to be entirely reusable, whereas NASA’s rocket is discarded into the ocean after each launch.

The success of Starship and the development of other large commercial rockets, such as the Jeff Bezos-owned firm Blue Origin’s New Glenn rocket, has raised questions about the need for SLS. In October, billionaire Michael Bloomberg called the rocket a “colossal waste of taxpayer money”. In November, journalist Eric Berger said there was at least a 50-50 chance the rocket would be canceled.

“I think it would be the right call,” says Abhishek Tripathi, a former mission director at SpaceX now at the University of California, Berkeley. “It’s hard to point to SLS as being necessary.”

The calculations are not straightforward, however. Dumbacher notes that while SpaceX is making “great progress” on Starship, there is much yet to do. The rocket will need to launch possibly up to 18 times to transfer fuel to a single lunar Starship in Earth orbit that can then make the journey to the moon. The first test of this fuel transfer is expected next year.

SLS, conversely, can send Orion to the moon in a single launch. That means the case for SLS is only diminished “if the price of 18 Starship launches is less than an SLS launch”, says Dumbacher. SpaceX was awarded $2.9 billion by NASA in 2021 for the first Starship mission to the moon on Artemis III, but the exact cost per launch is unknown.

The Artemis II Core Stage moves from final assembly to the VAB at NASA’s Michoud Assembly Facility in New Orleans, July, 6, 2024.

MICHAEL DEMOCKER/NASA

NASA is also already developing hardware for future SLS launches. “All elements for the second SLS for Artemis II have been delivered,” a NASA spokesperson said in response to emailed questions, adding that SLS also has “hardware in production” for Artemis III, IV, and V.

“SLS can deliver more payload to the moon, in a single launch, than any other rocket,” NASA said. “The rocket is needed and designed to meet the agency’s lunar transportation requirements.”

Dumbacher points out that if the US wants to return to the moon before China sends humans there, which the nation has said it would do by 2030, canceling SLS could be a setback. “Now is not the time to have a major relook at what’s the best rocket,” he says. “Every minute we delay, we are setting ourselves up for a situation where China will be putting people on the moon first.”

President-elect Donald Trump has given Musk a role in his incoming administration to slash public spending as part of the newly established Department of Government Efficiency. While the exact remit of this initiative is not yet clear, projects like SLS could be up for scrutiny.

Canceling SLS would require support from Congress, however, where Republicans will have only a slim majority. “SLS has been bipartisan and very popular,” says Forczyk, meaning it might be difficult to take any immediate action. “Money given to SLS is a benefit to taxpayers and voters in key congressional districts [where development of the rocket takes place],” says Forczyk. “We do not know how much influence Elon Musk will have.”

It seems likely the rocket will at least launch Artemis II next September, but beyond that there is more uncertainty. “The most logical course of action in my mind is to cancel SLS after Artemis III,” says Forczyk.

Such a scenario could have a broad impact on NASA that reaches beyond just SLS. Scrapping the rocket could bring up wider discussions about NASA’s overall budget, currently set at $25.4 billion, the highest-funded space agency in the world. That money is used for a variety of science including astrophysics, astronomy, climate studies, and the exploration of the solar system.

“If you cancel SLS, you’re also canceling the broad support for NASA’s budget at its current level,” says Tripathi. “Once that budget gets slashed, it’s hard to imagine it’ll ever grow back to present levels. Be careful what you wish for.”

Read more
1 23 24 25 26 27 2,504