Ice Lounge Media

Ice Lounge Media

In this issue: AstroForge reviews setbacks (and successes) during first mission; Terran Orbital CEO says company is not looking for a buyer; and news from the FCC, Terran Orbital and more.

© 2023 TechCrunch. All rights reserved. For personal use only.

Read more

These days even niche industries have concerned souls looking for more eco-friendly options for materials and processes, from washing machine waste to artificial wool. Lingrove is taking on laminates — thin layers of wood and other materials — with a carbon-negative option that they claim performs better while looking as good. Laminates or veneers are […]

© 2023 TechCrunch. All rights reserved. For personal use only.

Read more

OpenAI is expanding its internal safety processes to fend off the threat of harmful AI. A new “safety advisory group” will sit above the technical teams and make recommendations to leadership, and the board has been granted veto power — of course, whether it will actually use it is another question entirely. Normally the ins […]

© 2023 TechCrunch. All rights reserved. For personal use only.

Read more

Adobe and Figma ended their $20 billion acquisition dream this morning after regulators signaled it would continue to be rough going. Figma still gets a $1 billion consolation prize as part of the deal, and as the leader in collaborative design, the company should land on its feet just fine. But for Adobe, it could […]

© 2023 TechCrunch. All rights reserved. For personal use only.

Read more

After years of committing to sustainable practices in his personal life from recycling to using cloth-based diapers, Asim Hussain, currently the director of green software and ecosystems at Intel, began to ask questions about the practices in his work: software development.

Developers often asked if their software was secure enough, fast enough, or cost-effective enough but, Hussain says, they rarely considered the environmental consequences of their applications. Hussain would go on to work at Intel and become the executive director and chairperson of the Green Software Foundation, a non-profit aiming to create an ecosystem of people, tooling, and best practices around sustainable software development.

“What we need to do as software developers and software engineers is we need to make sure that it is emitting the least amount of carbon for the same amount of value and user functionality that we’re getting out of it,” says Hussain.

The three pillars of green software are energy efficiency, hardware efficiency, and carbon awareness. Making more efficient use of hardware and energy consumption when developing applications can go a long way toward reducing emissions, Hussain says. And carbon-aware computing involves divestment from fossil fuels in favor of renewable energy sources to improve efficiency without compromising performance.

Often, when something is dubbed “green,” there is an assumption that the product, application, or practice functions worse than its less environmentally friendly version. With software, however, the opposite is true.

“Being green in the software space means being more efficient, which translates almost always to being faster,” says Hussain. “When you factor in the hardware efficiency component, oftentimes it translates to building software that is more resilient, more fault-tolerant. Oftentimes it also translates then into being cheaper.”

Instituting green software necessitates not just a shift in practices and tooling but also a culture change within an enterprise. While regulations and ESG targets help to create an imperative, says Hussain, a shift in mindset can enable some of the greatest strides forward.

“If there’s anything we really need to do is to drive that behavior change, we need to drive behavior change so people actually invest their time on making software more energy efficient, more hardware efficient, or more carbon aware.”

This episode of Business Lab is produced in partnership with Intel.

Full Transcript

Laurel Ruma: From MIT Technology Review, I’m Laurel Ruma and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.

Our topic is green software, from apps to devices to the cloud. Computing runs the world around us. However, there is a better way to do it with a focus on sustainability.

Two words for you: sustainable code.

My guest is Asim Hussain, who is the director of the Office of Green Software and Ecosystems at Intel, as well as the chairperson of the Green Software Foundation.

This podcast is produced in partnership with Intel.

Welcome, Asim.

Asim Hussain: Hi Laurel. Thank you very much for having me.

Laurel: Well, glad you’re here. So for a bit of background, you’ve been working in software development and sustainability advocacy from startups to global enterprises for the last two decades. What drew you into sustainability as a focus and what are you working on now?

Asim: I’ve personally been involved and interested in the sustainability space for quite a while on a very personal level. Then around the birth of my first son, about five years ago now, I started asking myself this one question, which was how come I was willing to do all these things I was doing for sustainability to recycle, we were using cloth-based nappies, all sorts of these different things. Yet I could not remember in my entire career, my entire career, I could not remember one single moment where in any technical discussion, in any architectural meeting, in any discussion about how we’re going to build this piece of software. I mean, people oftentimes raise points around is this secure enough? Is this fast enough? Does this cost too much? But at no point I’d ever heard anybody ask the question, is this emitting too much carbon? Is this piece of software, is this solution that we’re talking about right now, how does that solution, what kind of environmental impacts does that have? I’ve never, ever, ever heard anybody raise that question.

So I really started to ask that question myself. I found other people who are like me. Five years ago, there weren’t many of us, but were all asking the same questions. I joined and then I started to become a co-organizer of a community called ClimateAction.Tech. Then the community just grew. A lot of people were starting to ask themselves these questions and some answers were coming along. At the time, I used to work at Microsoft and I pitched and formed something called the green cloud advocacy team, where we talked about how to actually build applications in a greener way on the cloud.

We formed something called the Green Software Foundation, which is a consortium of now 60 member organizations, which I am a chairperson of. Over a year ago I joined Intel because Intel has been heavily investing in sustainable software space. If you think about what Intel does, pretty much everything that Intel produces, developers use it and developers write software and write code on Intel’s products. So it makes sense for Intel to have a strong green software strategy. That’s kind of why I was brought in and I’ve since then been working on Intel’s green software strategy internally.

Laurel: So a little bit more about that. How can organizations make their software greener? Then maybe we should take a step back and define what green software actually is.

Asim: Well, I think we have to define what green software actually is first. The way the conversation’s landed in recent years and the Green Software Foundation has been a large part of this is we’ve coalesced around this idea of carbon efficiency, which is if you are building a piece of software … Everything we do emits carbon, everything we do emits carbon, this tool we’re using right now to record this session is emitting carbon right now. What we need to do as software developers and software engineers is we need to make sure that it is emitting the least amount of carbon for the same amount of value and user functionality that we’re getting out of it. That’s what we call carbon efficiency.

What we say is there’s three pillars underneath, there’s only really three ways to make your software green. The first is to make it more energy efficient, to use less energy. Most electricity is still created through the burning of fossil fuels. So just using less electricity is going to emit fewer carbon emissions into the atmosphere. So the first is energy efficiency. The second is hardware efficiency because all software runs on hardware and depends on the, if you’re talking about a mobile phone, typically people are forced to move on from mobile phones because the software just doesn’t run on their older models. In the cloud it tends to be more around a conversation around utilization by making more use of the servers that you already have in the cloud, making just more efficient use of the hardware. The third one is a very interesting space. It’s a very new space. It’s called carbon awareness or carbon-aware computing. That is you are going to be using electricity anyway. Can you make your software? Can you architect your software in such a way?

So it does more when the electricity is clean and does less when the electricity is dirty. So can you architect an application? So for instance, it does more when there’s more renewable energy on the grid right now, and it does less when more coal or gas is getting burnt. There’s some very interesting projects in this space that have been happening, very high-profile projects and carbon-aware computing is an area where there’s a lot of interest because it’s a stepping stone. It might not get you your 50, 60, 70% carbon reductions, but it will get you your 1, 2, 3, and 4% carbon reductions and it’ll get you that with very minimal investments. There’s a lot of interest in carbon-aware computing. But those are basically the three areas, what we call the three pillars of green software, energy efficiency, hardware efficiency, and carbon awareness.

Laurel: So another reason we’re talking about all of this is that technology can contribute to the environmental issues that it is trying to actually help. So for example, a lot of energy is needed to train AI models. Also, blockchain was key in the development of energy-efficient microgrids, but it’s also behind the development of cryptocurrency platforms, some of which consume more energy than that of a small country. So how can advanced technologies like AI, machine learning, and blockchain contribute positively to the development of green software?

Asim: That’s an interesting question because sometimes the focus oftentimes is how do we actually make that technology greener? But I don’t believe that is necessarily the whole story. The story is the broader story. How can we use that technology to make software greener? I think there’s many ways you can probably tackle that question. One thing that’s been interesting for me since my journey as a software developer joining Intel is me realizing how little I knew about hardware. There is so much, I describe it as the gap between software and silicon. The gap is quite large right now. If you’re building software these days, you have very little understanding of the silicon that’s running that software. Through a greater understanding of exactly how your software is exactly getting executed by the silicon to implement the functionality, that’s where we are seeing that there’s a lot of great opportunities to reduce emissions and to make that software more energy efficient, more hardware efficient.

I think that’s where places like AI can really help out. Developer productivity has been the buzzword in this space for a very long time. Developers are extremely expensive. Getting to market fast and beating your competition is the name of the game these days. So it’s always been about how do we implement the functionality we need as fast as possible, make sure it’s secure, get it out the door. But oftentimes the only way you can do that is to increase the gap between the software and silicon and just make it a little bit more inefficient. I think AI can really help there. You can build AI solutions that can, there’s copilot solutions which can help as you’re developing code could actually suggest to you. If you were to write your code in a slightly different way, it could be more efficient. So that’s one way AI can help out.

Another way that I’m seeing AI utilized in this space as well is when you deploy … Silicon and the products that we produce can actually, they come out of the box configured in a certain way, but they can actually be tuned to actually execute that particular piece of software much more efficiently. So if you have a data center running just one type of software, you can actually tune the hardware so that software is run more efficiently on that hardware. We’re seeing AI solutions come on the market these days, which can then automatically just figure out what type of application are you, how do you run, how do you work? We have a solution called Granulate, which does part of this as well. It can then figure out how do you tune the underlying hardware in such a way so it executes that software more efficiently. So I think that’s kind of a couple of ways that this technology could actually be used to make software itself greener.

Laurel: To bridge that gap between software and silicon, you must be able to measure the progress and meet targets. So what parameters do you use to measure the energy efficiency of software? Could you talk us through the tenets of actually measuring?

Asim: So measuring is an extremely challenging problem. When we first launched the Green Software Foundation three years ago, I remember asking all the members, what is your biggest pain point? They all came back, almost all came back with measuring. Measuring is very, very challenging. It’s so nuanced, there’s so many different levels to it. For instance, at Intel, we have technology in our chips to actually measure the energy of the whole chip. Those counters on the chip which measure it. Unfortunately, that only gives you the energy of the entire chip itself. So it does give you a measurement, but then if you are a developer, there’s maybe 10 processes running on that chip and only one of them is yours. You need to know how much energy is your process consuming because that’s what you can optimize for. That’s what you can see. Currently, the best way to measure at that level is using models, models which are either generated again through AI or through other processes where you can effectively just run lots large amounts of data and generate statistical models.

Oftentimes a model that’s used is one that uses CPU [central processing unit] utilization, so how busy a CPU is and translate that into energy. So you can see my process is consuming 10% of the CPU. There are models out there that can convert that into energy, but again, all models are wrong, some models are useful. So there’s always so much nuance to this whole space as well, because how have you tweaked your computer? What else is running on your computer? It can also affect how those numbers are measured. So, unfortunately, this is a very, very challenging area.

But this is really the really big area that a lot of people are trying to resolve right now. We are not at the perfect solution, but we are way, way better than we were three, four or five years ago. It’s actually a very exciting time for measurement in this space.

Laurel: Well, and I guess part of it is that green software seems to be developed with greater scrutiny and higher quality controls to ensure that the product actually meets these standards to reduce emissions. Measurement is part of that, right? So what are some of the rewards beyond emissions reduction or meeting green goals of developing software? You kind of touched on that earlier with the carbon efficiency as well as hardware efficiency.

Asim: Yeah, so this is something I used to think about a lot because the term green has a lot associated with it. I mean, oftentimes when people historically have used the word green, you can have the main product or the green version of the product. There’s an idea in your mind that the green version is somehow less than, it’s somehow not as good. But actually in the software space it’s so interesting because the exact opposite. Being green in the software space means being more efficient, which translates almost always to being faster. When you factor in the hardware efficiency component, oftentimes it translates to building software that is more resilient, more fault-tolerant. Oftentimes it also translates then into being cheaper. So actually green has a lot of positive associations with it already.

Laurel: So in that vein, how can external standards help provide guidance for building software and solutions? I mean, obviously, there’s a need to create something like the Green Software Foundation, and with the focus that most enterprises have now on environmental, social, and governance goals or ESG, companies are now looking more and more to build those ideas into their everyday workflow. So how do regulations help and not necessarily hinder this kind of progress?

Asim: So standards are very, very important in this space. Standards, I mean, one of the things, again, when we look to the ecosystem about three, four years ago, the biggest problem the enterprises had, I mean a lot of them were very interested in green software, but the biggest problem they had was what do they trust? What can I trust? Whose advice should I take? That’s where standards come in. That’s where standards are most important. Standards are, at least the way we develop standards inside the Green Software Foundation, they’re done via consensus. There are like 60 member organizations. So when you see a standard that’s been created by that many people and that many people have been involved with it, it really builds up that trust. So now you know what to do. Those standards give you that compass direction to tell you which direction to go in and that you can trust.

There’s several standards that we’ve been focusing on in the Green Software Foundation, one’s called the SEI, which is a software carbon intensity specification. Again, to prove it as an ISO standard, you have to reach consensus through 196 countries. So then you get even more trust into a standard so you can use it. So standards really help to build up that trust, which organizations can use to help guide them in the directions to take. There’s a couple of other standards that are really coming up in the foundation that I think are quite interesting. One is called Real-Time Cloud. One of the challenges right now is, and again always comes back to measurement, it always always comes back to measurement. Right now measurement is very discreet, it happens oftentimes just a few times a year. Oftentimes when you get measurement data, it is very delayed. So one of the specs that’s been worked on right now is called Real-Time Cloud.

It’s trying to ask the question, is it possible? Is it possible to get data that is real-time? Oftentimes when you want to react and change behaviors, you need real-time data. If you want data so that when somebody does something, they know instantly the impact of that action so they can make adjustments instantly. If they’re having to wait three months, that behavior change might not happen. Real-time [data] is oftentimes at log aheads with regulations because oftentimes you have to get your data audited and auditing data that’s real-time is very, very challenging. So one of the questions we’re trying to ask is, is it possible to have data which is real-time, which then over the course of a year, you can imagine it just aggregates up over the course of a year. Can that aggregation then provide enough trust so that an auditor can then say, actually, we now trust this information and we will allow that to be used in regulatory reporting.

That’s something that we’re very excited about because you really need real-time data to drive behavior change. If there’s anything we really need to do is to drive that behavior change, we need to drive behavior change so people actually invest their time on making software more energy efficient, more hardware efficient, or more carbon aware. So that’s some of the ways where standards are really helping in this space.

Laurel: I think it’s really helpful to talk about standards and how they are so ingrained with software development in general because there are so many misconceptions about sustainability. So what are some of the other misconceptions that people kind of get stuck on, maybe that even calling it green, right? Are there philosophies or strategies that you can caution against or you try to advocate for?

Asim: So as a couple of things I talk about, so one of the things I talk about is it does take everybody, I mean, I remember very early on when I was talking in this space, oftentimes a conversation went, oh, don’t bother talking to that person or don’t talk to this sector of developers, don’t talk to that type of developers. Only talk to these people, these people who have the most influence to make the kind of changes to make software greener. But it really takes a cultural change. This is what’s very important, really takes a cultural change inside an organization. It takes everybody. You can’t really talk to one slice of the developer ecosystem. You need to talk to everybody. Every single developer or engineer inside an organization really needs to take this on board. So that’s one of the things I say is that you have to speak to every single person. You cannot just speak to one set of people and exclude another set of people.

Another challenge that I often see is that people, when they talk about this space, one of the misconceptions they talk about is they rank where effort should be spent in terms of the carbon slice of the pie that it is responsible for and I’ll talk about this in general. But really how you should be focusing is you should be focusing not on the slice of the pie, but on the ability to decarbonize that slice of the pie. That’s why green software is so interesting and that’s why it’s such a great place to spend effort and time. It might not be, I mean it is, depending on which academic paper you look at, it can be between 2 to 4% of global emissions. So some people might say, well, that’s not really worth spending the time in.

But my argument is actually the ability for us to decarbonize that 2 to 4% is far easier than our ability to decarbonize other sectors like airlines or concrete or these other sectors. We know what we need to do oftentimes in the software space, we know the choices. There doesn’t need to be new technology made, there just needs to be decisions made to prioritize this work. That’s something I think is very, very important. We should rank everything in terms of our ability to decarbonize the ease of decarbonization and then work on the topmost item first down, rather than just looking at things in just terms of tons of carbon, which I think leads to wrong decision making.

Laurel: Well, I think you’re laying out a really good argument because green initiatives, they can be daunting, especially for large enterprises looking to meet those decarbonization thresholds within the next decade. For those companies that are making the investment into this, how should they begin? Where are the fundamental things just to be aware of when you’re starting this journey?

Asim: So the first step is, I would say training. What we’re describing here in terms of, especially in terms of the green software space, it’s a very new movement. It’s a very new field of computing. So a lot of the terms that I talk about are just not well understood and a lot of the reasons for those terms are not well understood as well. So the number one thing I always say is you need to focus on training. There’s loads of training out there. The Green Software Foundation’s got some training, learn.GreenSoftware.Foundation, it’s just two hours, it’s free. We send that over to anybody who’s starting in this space just to understand the language, the terminology, just to get everybody on the same page. That is usually a very good start. Now in terms of how do you motivate inside, I think about this a lot.

If you’re the lead of an organization and you want to make a change, how do you actually make that change? I’m a big, big believer in trusting your team, trusting your people. If you give engineers a problem, they will find a solution to that problem. But what they oftentimes need is permission, a thumbs up from leadership that this is a priority. So that’s why it’s very important for organizations to be very public about their commitments, make public commitments. Same way Intel has made public commitments. Be very vocal as a leader inside your organization and be very clear that this is a priority for you, that you will listen to people and to teams who bring you solutions in this space.

You will find that people within your organization are already thinking about this space, already have ideas, already probably have decks ready to present to you. Just create an environment where they feel capable of presenting it to you. I guarantee you, your solutions are already within your organization and already within the minds of your employees.

Laurel: Well, that is all very inspiring and interesting and so exciting. So when you think about the next three to five years in green software development and adoption, what are you looking forward to the most? What excites you?

Asim: I think I’m very excited right now, to be honest with you. I look back, I look back five years ago the very, very early days, first looked at this, and I still remember if there was one article, one mentioning green software, we would all lose our heads. We’d get so excited about it, we’d share it, we’d pour over it. Now I’m inundated with information. This movement has grown significantly. There are so many organizations that are deeply interested in this space. There’s so much research, so much academic research.

I have so many articles coming my way every single week. I do not have time to read them. So that gives me just a lot of hope for the future. That really excites me. I might just be because I’m at this kind of cutting edge of this space, so I see a lot of this stuff before anybody else, but I see a huge amount of interest and I see also a huge amount of activity as well. I see a lot of people working on solutions, not just talking about problems, but working on solutions to those problems. That honestly just excites me. I don’t know where we’re going to end up in five years time, but if this is our growth so far, I think we’re going to end up in a very good place.

Laurel: Oh, that’s excellent. Awesome. Thank you so much for joining us today on the Business Lab.

Asim: Thank you very much for having me.

Laurel: That was Asim Hussain, the director of the Office of Green Software and Ecosystems at Intel, who I spoke with from Cambridge, Massachusetts, the home of MIT and MIT Technology Review.

That’s it for this episode of Business Lab. I’m your host, Laurel Ruma. I’m the director of Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can also find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.

This show is available wherever you get your podcasts. If you enjoyed this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review. This episode was produced by Giro Studios. Thanks for listening.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Read more

One can’t step into the same river twice. This simple representation of change as the only constant was taught by the Greek philosopher Heraclitus more than 2000 years ago. Today, it rings truer than ever with the advent of generative AI. The emergence of generative AI is having a profound effect on today’s enterprises—business leaders face a rapidly changing technology that they need to grasp to meet evolving consumer expectations.

“Across all industries, customers are at the core, and tapping into their latent needs is one of the most important elements to sustain and grow a business,” says Akhilesh Ayer, executive vice president and global head of AI, analytics, data, and research practice at WNS Triange, a unit of WNS Global Services, a leading business process management company. “Generative AI is a new way for companies to realize this need.”

A strategic imperative

Generative AI’s ability to harness customer data in a highly sophisticated manner means enterprises are accelerating plans to invest in and leverage the technology’s capabilities. In a study titled “The Future of Enterprise Data & AI,” Corinium Intelligence and WNS Triange surveyed 100 global C-suite leaders and decision-makers specializing in AI, analytics, and data. Seventy-six percent of the respondents said that their organizations are already using or planning to use generative AI.

According to McKinsey, while generative AI will affect most business functions, “four of them will likely account for 75% of the total annual value it can deliver.” Among these are marketing and sales and customer operations. Yet, despite the technology’s benefits, many leaders are unsure about the right approach to take and mindful of the risks associated with large investments.

Mapping out a generative AI pathway

One of the first challenges organizations need to overcome is senior leadership alignment. “You need the necessary strategy; you need the ability to have the necessary buy-in of people,” says Ayer. “You need to make sure that you’ve got the right use case and business case for each one of them.” In other words, a clearly defined roadmap and precise business objectives are as crucial as understanding whether a process is amenable to the use of generative AI.

The implementation of a generative AI strategy can take time. According to Ayer, business leaders should maintain a realistic perspective on the duration required for formulating a strategy, conduct necessary training across various teams and functions, and identify the areas of value addition. And for any generative AI deployment to work seamlessly, the right data ecosystems must be in place.

Ayer cites WNS Triange’s collaboration with an insurer to create a claims process by leveraging generative AI. Thanks to the new technology, the insurer can immediately assess the severity of a vehicle’s damage from an accident and make a claims recommendation based on the unstructured data provided by the client. “Because this can be immediately assessed by a surveyor and they can reach a recommendation quickly, this instantly improves the insurer’s ability to satisfy their policyholders and reduce the claims processing time,” Ayer explains.

All that, however, would not be possible without data on past claims history, repair costs, transaction data, and other necessary data sets to extract clear value from generative AI analysis. “Be very clear about data sufficiency. Don’t jump into a program where eventually you realize you don’t have the necessary data,” Ayer says.

The benefits of third-party experience

Enterprises are increasingly aware that they must embrace generative AI, but knowing where to begin is another thing. “You start off wanting to make sure you don’t repeat mistakes other people have made,” says Ayer. An external provider can help organizations avoid those mistakes and leverage best practices and frameworks for testing and defining explainability and benchmarks for return on investment (ROI).

Using pre-built solutions by external partners can expedite time to market and increase a generative AI program’s value. These solutions can harness pre-built industry-specific generative AI platforms to accelerate deployment. “Generative AI programs can be extremely complicated,” Ayer points out. “There are a lot of infrastructure requirements, touch points with customers, and internal regulations. Organizations will also have to consider using pre-built solutions to accelerate speed to value. Third-party service providers bring the expertise of having an integrated approach to all these elements.”

Ayer offers the example of WNS Triange helping a travel intermediary use generative AI to deal with customer inquiries about airline rescheduling, cancellations, and other itinerary complications. “Our solution is immediately able to go into a thousand policy documents, pick out the policy parameters relevant to the query… and then come back quickly not only with the response but with a nice, summarized, human-like response,” he says.

In another example, Ayer shares that his company helped a global retailer create generative AI–driven designs for personalized gift cards. “The customer experience goes up tremendously,” he says.

Hurdles in the generative AI journey

As with any emerging technology, however, there are organizational, technical, and implementation barriers to overcome when adopting generative AI.

Organizational:  One of the major hurdles businesses can face is people. “There is often immediate resistance to the adoption of generative AI because it affects the way people work on a daily basis,” says Ayer.

As a result, securing internal buy-in from all teams and being mindful of a skills gap is a must. Additionally, the ability to create a business case for investment—and getting buy-in from the C-suite—will help expedite the adoption of generative AI tools.

Technical: The second set of obstacles relates to large language models (LLMs) and mechanisms to safeguard against hallucinations and bias and ensure data quality. “Companies need to figure out if generative AI can solve the whole problem or if they still need human input to validate the outputs from LLM models,” Ayer explains. At the same time, organizations must ask whether the generative AI models being used have been appropriately trained within the customer context or with the enterprise’s own data and insights. If not, there is a high chance that the response will be incorrect. Another related challenge is bias: If the underlying data has certain biases, the modeling of the LLM could be unfair. “There have to be mechanisms to address that,” says Ayer. Other issues, such as data quality, output authenticity, and explainability, also must be addressed.

Implementation: The final set of challenges relates to actual implementation. The cost of implementation can be significant, especially if companies cannot orchestrate a viable solution, says Ayer. In addition, the right infrastructure and people must be in place to avoid resource constraints. And users must be convinced that the output will be relevant and of high quality, so as to gain their acceptance for the program’s implementation.

Lastly, privacy and ethical issues must be addressed. The Corinium Intelligence and WNS Triange survey showed that almost 72% of respondents were concerned about ethical AI decision-making.

The focus of future investment

The entire ecosystem of generative AI is moving quickly. Enterprises must be agile and adapt quickly to change to ensure customer expectations are met and maintain a competitive edge. While it is almost impossible to anticipate what’s next with such a new and fast-developing technology, Ayer says that organizations that want to harness the potential of generative AI are likely to increase investment in three areas:

  • Data modernization, data management, data quality, and governance: To ensure underlying data is correct and can be leveraged.
  • Talent and workforce: To meet demand, training, apprenticeships, and injection of fresh talent or leveraging market-ready talent from service providers will be required.
  • Data privacy solutions and mechanisms: To ensure privacy is maintained, C-suite leaders must also keep pace with relevant laws and regulations across relevant jurisdictions.

However, it shouldn’t be a case of throwing everything at the wall and seeing what sticks. Ayer advises that organizations examine ROI from the effectiveness of services or products provided to customers. Business leaders must clearly demonstrate and measure a marked improvement in customer satisfaction levels using generative AI–based interventions.

“Along with a defined generative AI strategy, companies need to understand how to apply and build use cases, how to execute them at scale and speed to market, and how to measure their success,” says Ayer. Leveraging generative AI for customer engagement is typically a multi-pronged approach, and a successful partnership can help with every stage.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Read more

This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.

The hunter-gatherer groups at the heart of a microbiome gold rush

Over the last couple of decades, scientists have come to realize just how important the microbes that crawl all over us are to our health. But some believe our microbiomes are in crisis—casualties of an increasingly sanitized way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed environment that most of the rest of us share. They’ve been studying the feces of people like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

But there is a major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others. At the same time, members of the communities being studied are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. Read the full story.

—Jessica Hamzelou

Eric Schmidt has a 6-point plan for fighting election misinformation

—by Eric Schmidt, formerly the CEO of Google, and current cofounder of philanthropic initiative Schmidt Futures

The coming year will be one of seismic political shifts. Over 4 billion people will head to the polls in countries including the United States, Taiwan, India, and Indonesia, making 2024 the biggest election year in history.

With AI starting to make social media much more toxic, platforms and regulators need to act quickly to regain user trust and safeguard our democracy, setting up new rules and laws. While these won’t solve all the problems of mis- and disinformation, they can help stem the tide ahead of elections next year. 

Here I propose six technical approaches that platforms should adopt to protect their users. Read the full story.

You can read more about Eric Schmidt’s plan to combat election misinformation in the latest edition of The Technocrat, MIT Technology Review’s weekly tech and politics newsletter. Sign up to receive it in your inbox every Friday.

The must-reads

I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

1 Blue Origin’s New Shepard rocket is taking off today
But a crew won’t be on board this time. (Engadget)
+ How to watch the flight blast off. (The Verge)
+ China has launched a spy satellite using its tallest ever rocket. (Ars Technica)

2 Why generate AI companies appear so fixated on the media
It’s not just down to a desire to reduce their likelihood of getting sued by publishers. (NY Mag $)
+ Make no mistake—AI is owned by Big Tech. (MIT Technology Review)

3 The EV hype bubble is bursting
Firms that fail to deliver their lofty green promises could face bankruptcy—or even jail time. (NYT $)
+ Tesla is recalling more than two million cars in the US. (NY Mag $)
+ …But experts aren’t convinced the recall will actually fix its safety issues. (WP $)

4 When it comes to loneliness, tech is a double-edged sword
Because it can alleviate, as well as exacerbate our feelings of disconnect. (WP $)
+ Why do you feel lonely? (MIT Technology Review)

5 Not all robotaxi companies are in trouble right now
May Mobility has avoided a lot of the pitfalls its rivals have experienced. (The Verge)
+ Robotaxis are here. It’s time to decide what to do about them. (MIT Technology Review)

6 Children with cancer were treated with contaminated drugs
And, years later, the company responsible hasn’t faced any serious consequences. (Bloomberg $)
+ Innovative new cell therapies could finally get at tough-to-target cancers. (MIT Technology Review)

7  Department store salespeople are influencers too
Stores used to avoid social media promotion. Now they can’t get enough of it. (The Information $)

8 The UK’s health service is experimenting with drone deliveries
Healthcare trusts hope they’ll help to improve services but also save money. (FT $)

9 Not all self-checkouts are awful
In fact, Uniqlo’s hi-tech checkout machines are pretty good. (WSJ $)

10 How the world laughs online
From lol and jaja to kkkk and wkwkwk. (Rest of World)

Quote of the day

“There are these guys who don’t do anything.”

—An anonymous Nvidia worker laments the fact that a growing number of employees, sitting on a wealth of company stock, are content to kick back and do as little as possible to Insider.

The big story

The big new idea for making self-driving cars that can go anywhere

May 2022

When Alex Kendall sat in a car on a small road in the British countryside and took his hands off the wheel back in 2016, it was a small step in a new direction—one that a new bunch of startups bet might be the breakthrough that makes driverless cars an everyday reality.

This was the first time that reinforcement learning—an AI technique that trains a neural network to perform a task via trial and error—had been used to teach a car to drive from scratch on a real road. It took less than 20 minutes for the car to learn to stay on the road by itself, Kendall claims.

These startups are betting that smarter, cheaper tech will let them overtake current market leaders. But is this yet more hype from an industry that’s been drinking its own Kool-Aid for years? Read the full story.

—Will Douglas Heaven

We can still have nice things

A place for comfort, fun and distraction in these weird times. (Got any ideas? Drop me a line or tweet ’em at me.)

+ These are some super tuneful chili peppers.
+ Ever wondered about the device playing music through your headphones on a plane? Wonder no more.
+ Let’s dive inside the mystery of the missing X-Files song.
+ Our four-legged friends are a lot smarter than some would have us believe.
+ Happy 80th birthday to the man, the myth, the legend—Keith Richards.

Read more

This article is from The Technocrat, MIT Technology Review’s weekly tech policy newsletter about power, politics, and Silicon Valley. To receive it in your inbox every Friday, sign up here.

We’re already at that time of year when we start looking ahead to what’s coming in 2024. For Technocrat readers (and the rest of the globe!), next year is going to be a doozy, with over 40 national elections worldwide and a landscape of constantly evolving information technologies. 

One of the biggest areas to watch, of course, will be generative AI, particularly how it changes social media, political campaigning, and the fight over election misinformation. This confluence of new tech and big elections is also happening while the social media industry is going through major changes, including shifts in moderation approacheslegal battlescuts to trust and safety teams, and platform shake-ups

This is all poised to make the future of the fight against misinformation murky, to say the least. It’s a topic my colleagues and I take very seriously and have covered extensively in the past. And recently in MIT Technology Review, former Google boss Eric Schmidt penned an op-ed that lays out what he calls “a paradigm shift for social media platforms”: 

The role of Facebook and others has conditioned our understanding of social media as centralized, global “public town squares” with a never-ending stream of content and frictionless feedback. Yet the mayhem on X (a.k.a. Twitter) and declining use of Facebook among Gen Z—alongside the ascent of apps like TikTok and Discord—indicate that the future of social media may look very different. In pursuit of growth, platforms have embraced the amplification of emotions through attention-driven algorithms and recommendation-fueled feeds. 

But that’s taken agency away from users (we don’t control what we see) and has instead left us with conversations full of hate and discord, as well as a growing epidemic of mental-health problems among teens … Now, with AI starting to make social media much more toxic, platforms and regulators need to act quickly to regain user trust and safeguard our democracy. 

Schmidt goes on to lay out a six-point plan social media companies can follow to meet the moment. One thing I was happy to see him mention is the importance of provenance information, which I have written about a few times previously. It’s an insightful and useful piece that I’d definitely urge you to read! 

This is the last Technocrat of 2023, and I’ll be back in your inbox in January. In the meantime, over the next few weeks we’ll be publishing more stories about what’s to come in technology in 2024, so be on the lookout for those. And if you want to catch up on some past stories that you may have missed, here are just a few of my favorites from my colleagues in 2023:

What I am reading this week

What I learned this week

Microsoft’s Bing AI chatbot, renamed Microsoft Copilot, got election information wrong one third of the time, according to a new study from nonprofits AI Forensics and AlgorithmWatch. Will Oremus in the Washington Post writes that the study results “reinforce concerns that today’s AI chatbots could contribute to confusion and misinformation around future elections as Microsoft and other tech giants race to integrate them into everyday products, including internet search.” Here’s a reminder to not rely on generative AI for news! 

Read more

We’re all teeming with microbes. We’ve got guts full of them, and they’re crawling all over our skin. These tiny, ancient life forms have evolved with us. And over the last couple of decades, scientists have come to realize just how important they are to our health and well-being. They help extract nutrients from our food, influence the way our immune systems work, and can even send signals to our brains that play a role in our mental health. 

But some researchers believe our microbiomes are in crisis—casualties of an increasingly sanitized, industrialized, and antimicrobial way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

“It’s very clear in industrialized nations we have lost many species that were probably fundamental to human evolution,” says Justin Sonnenburg, a microbiome scientist at Stanford University. “They’ve just become extinct.” Some have seemingly disappeared before we’ve even had a chance to figure out what they do.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed, and antimicrobial-laden environment that most of the rest of us share. They’ve been studying the feces of people from hunter-gatherer societies like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

a Yanomami youth in a tree

YANOMAMI FOUNDATION

And so the race is on to find those missing microbes. Both academics and companies are building catalogues of microbes seen in hunter-gatherer societies, and attempting to re-create this microbial brew as a treatment for people in industrialized societies. The hope is that with the proper mix of microbes, many people might gain protection from disorders, like depression and metabolic disease, that seem to affect people living in industrialized societies at much higher rates. But there is a rather major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others.

At the same time, members of the communities being studied say some projects aren’t being done ethically or equitably. Even recent research projects have taken biological samples without consent and attempted to artificially manipulate the way hunter-gatherers eat and live, says Shani Mangola, a member of the much-studied Hadza society in Tanzania. He and others are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. 

“Some people don’t understand [and ask], Why are these people taking my hair? Why are they taking my poop?” says Mangola. “They need to understand what the research is about, what the impact is, and what value it brings to the communities and to the world.”

Microbes as medicine

The idea of repopulating our guts with stuff from healthy people goes back a long way. The first known documentation of the idea of fecal transplants dates back to fourth-century China. At that time, a fecal slurry known as “yellow soup” was served up as a broth to people with food poisoning and diarrhea.

Humans might not have had as sophisticated an understanding of gut microbiota back then, but the goal was the same as it is now—to share health. Because our gut microbes are shed in our feces, you can use poo from a healthy person to repopulate the gut of someone who’s sick. These days, fecal transplants are routinely performed for people with stubborn Clostridium difficile infections. The procedure, which relies on donations from healthy volunteers, can work remarkably well, with a success rate over 80%.

Scientists have been exploring the use of fecal transplants for other diseases too. Microbes in your gut can influence the way your digestion works, and how your intestines function in general. But the microbes also produce a range of chemicals that influence other aspects of our health, including inflammation and brain function. Clinical trials are underway for the use of fecal transplants in anorexia, diabetes, Parkinson’s disease, and Crohn’s, among others. And they are also being investigated for their potential to enhance the way people respond to other treatments.

But microbial transplants can be messy. While hospitals will always filter donations and check for some particularly nasty bugs, we can never be completely sure a fecal transplant won’t harbor bacteria that cause disease in a recipient even if they are totally innocuous in a donor’s gut. And because these are complex mixtures of microbes, doctors won’t usually know exactly what they’re squirting down a person’s throat or up their anus.

The goal is to have a defined mix of known microbes. Not only should we know what the bugs are, but we should know what they do—what they feed on and what they produce. We should know that they are likely to benefit a person before we deliver them.

Researchers interested in creating these sorts of microbial cocktails are looking beyond what we tend to understand as “healthy” when it comes to donors. Yes, we should be looking for microbes in the feces of people who don’t have infections or diseases, but that’s not enough. Chronic diseases linked to inflammation have taken off just as we’ve begun to live more sanitized lives. And if a lack of protective microbes is to blame, even the healthiest people in industrialized groups aren’t going to provide much help. 

Instead, scientists want to cast the net wider: to find microbes that evolved with us, but that many of us have since killed off or lost. The missing microbes.

Missing microbes

Those of us who live in industrialized societies have changed the habitats of our gut microbes to a fairly drastic degree. We use antibiotics and antibacterials and eat a diet of novel ingredients and heavily processed foods.

As a result, microbiologists believe, we’ve been killing off some of the microbes that humans once carried. Compare modern-day fecal samples with ancient ones, and there are clear differences. The microbiomes of today are less diverse, with more of some bugs and fewer of others. Scientists believe that some of the ones that are missing have very important functions, like breaking down certain carbohydrates and producing chemicals that might be important for gut health.

Some people call it a great extinction. And the decline in these microbes has been linked to an uptick in a range of chronic diseases like asthma, diabetes, and inflammatory bowel disease. 

Aleksandar Kostic, a microbiologist at Harvard Medical School, wants to know what microbes our ancestors did have. A couple of years ago, he and his colleagues looked for microbial DNA in eight samples of ancient human feces collected from the southwestern United States and Mexico. These remains, known as paleofeces, were estimated to be between 1,000 and 2,000 years old. 

9 samples from a SEM showing a diversity of particles
Scanning electron microscopy images of palaeofaeces samples from Aleksandar Kostic’s research reveal traces of maize pollen, agave phytoliths, squash and amaranth.

When Kostic and his colleagues compared the fossilized poo with modern-day microbiome samples from people from eight different countries, they found significant differences. But some samples were more similar than others. 

Specifically, modern-day samples from people who live in “nonindustrialized” communities had a lot more in common with the ancient feces. “The paleofeces and the Yanomami samples almost matched,” says Emma Allen-Vercoe, a microbiologist at the University of Guelph in Canada, who was not an author of the study. 

In their write-up, Kostic and his colleagues conclude that “similar future studies tapping into the richness of paleofeces will not only expand our knowledge of the human microbiome, but may also lead to the development of approaches to restore present-day microbiomes to their ancestral state.” 

Paleofeces are hard to come by, though. So microbiologists have turned to people in those “nonindustrialized” communities instead. “There’s a lot of value in studying modern hunter-gatherers,” says Kostic. “We were all hunter-gatherers for the vast majority of human history.” 

Kostic thinks that a more “ancient” microbiome might help protect such people from some of the chronic diseases that plague industrialized groups. He points to research suggesting that Indigenous groups that rely on hunting, gathering, fishing, and farming appear to have a much lower risk of disorders like coronary artery disease, for example. 

The idea is that such groups have maintained a microbiome that hasn’t been subject to the same great extinction that happened among people in industrialized places. Could they be better off because of it?

Perfect poo

While we still don’t know exactly what a perfect microbiome should look like, researchers agree that some microbes are especially important. Just like any ecosystem, our guts are probably home to keystone species—organisms that have an outsize impact on the system as a whole. “Fostering those seems to be good,” says Allen-Vercoe.

Harboring a diverse collection of microbes also seems to be important. People who eat healthy diets and have fewer health complaints tend to have a better mix of microbial species in their guts. The theory is that with a broader range of microbes, a person can benefit from more microbial functions—and the production of more health-promoting chemicals. “The more diversity you have, the more [microbial] genes you carry,” says Allen-Vercoe. “And the more genes you carry, the more biochemical work you can do.”

There is evidence to suggest that people who live in less industrialized environments host a richer diversity of gut microbes. And as industrialization takes shape in a community, its members start to lose this diversity. But it’s still not clear what sort of impact this has on human health. “The more urban, the less diversity,” says Maria Gloria Dominguez-Bello, a microbial ecologist at Rutgers. “What we still don’t know is: What functions are we losing?”

The first step to finding out is to catalogue what microbes we might have lost. To get as close to ancient microbiomes as possible, microbiologists have begun studying multiple Indigenous groups. Two have received the most attention: the Yanomami of the Amazon rainforest and the Hadza, in northern Tanzania. 

Researchers have made some startling discoveries already. A study by Sonnenburg and his colleagues, published in July, found that the gut microbiomes of the Hadza appear to include bugs that aren’t seen elsewhere—around 20% of the microbe genomes identified had not been recorded in a global catalogue of over 200,000 such genomes. The researchers found 8.4 million protein families in the guts of the 167 Hadza people they studied. Over half of them had not previously been identified in the human gut.

Plenty of other studies published in the last decade or so have helped build a picture of how the diets and lifestyles of hunter-gatherer societies influence the microbiome, and scientists have speculated on what this means for those living in more industrialized societies. But these revelations have come at a price.

A changing way of life

The Hadza people hunt wild animals and forage for fruit and honey. “We still live the ancient way of life, with arrows and old knives,” says Mangola, who works with the Olanakwe Community Fund to support education and economic projects for the Hadza. Hunters seek out food in the bush, which might include baboons, vervet monkeys, guinea fowl, kudu, porcupines, or dik-dik. Gatherers collect fruits, vegetables, and honey.

Mangola, who has met with multiple scientists over the years and participated in many research projects, has witnessed firsthand the impact of such research on his community. Much of it has been positive. But not all researchers act thoughtfully and ethically, he says, and some have exploited or harmed the community.

One enduring problem, says Mangola, is that scientists have tended to come and study the Hadza without properly explaining their research or their results. They arrive from Europe or the US, accompanied by guides, and collect feces, blood, hair, and other biological samples. Often, the people giving up these samples don’t know what they will be used for, says Mangola. Scientists get their results and publish them without returning to share them. “You tell the world [what you’ve discovered]—why can’t you come back to Tanzania to tell the Hadza?” asks Mangola. “It would bring meaning and excitement to the community,” he says.

Some scientists have talked about the Hadza as if they were living fossils, says Alyssa Crittenden, a nutritional anthropologist and biologist at the University of Nevada in Las Vegas, who has been studying and working with the Hadza for the last two decades.

The Hadza have been described as being “locked in time,” she adds, but characterizations like that don’t reflect reality. She has made many trips to Tanzania and seen for herself how life has changed. Tourists flock to the region. Roads have been built. Charities have helped the Hadza secure land rights. Mangola went abroad for his education: he has a law degree and a master’s from the Indigenous Peoples Law and Policy program at the University of Arizona.

Hadza women sitting on the ground in the tall grass
Hadza women forage for starchy tubers that make up part of their diet.
ISTOCK

At the same time, land-grabbing and business expansion are limiting the natural resources available to the Hadza. Forty years ago, Mangola says, animals were relatively easy to find in the bush, and his community ate meat almost every day. Nowadays, hunters have to travel much farther to find animals. Communities might eat meat once a week. The Hadza people increasingly use money from tourists to buy food from nearby farms and villages, he says.

This reality doesn’t fit with the narrative of an existence that has barely changed since ancient times. Mangola says he has seen scientists try to encourage Hadza people to adopt more traditional diets and lifestyles for research projects. “Some of them come here and stop the Hadza eating their normal food—they ask them to eat as if they were eating years ago,” he says. “[They should] tell the world the truth: there’s not enough food in the bush. People are going borrowing and begging for food because the bush is gone.”

Several people pointed to work done by Jeff Leach, an archaeology writer who also studied microbiomes in the Hadza people. Leach infamously used a turkey baster to give himself a fecal transplant from a member of the Hadza community in an effort to improve his own gut health. (None of the people contacted by MIT Technology Review know the full details of the impact this stunt had on Leach’s health.)

“Taking advantage of an Indigenous population and using their microbes to try to reinstate health in somebody from a wealthy, industrialized nation, I think, is a problematic thing to do,” says Sonnenburg. He doesn’t think such experiments should never be done—just that the ethical implications should be thoroughly explored, and that the Hadza should be fully informed and consent to the research.

“The Hadza were so sad about that,” says Mangola. “He used to be my friend.” MIT Technology Review attempted to contact Leach via email but did not receive a response.

A fair share

An ocean away, David Good is trying to forge a different path forward for microbiome research. Good had an unusual childhood. Half American and half Yanomami, he split the first five years of his life between the Amazon rainforest in Venezuela and suburban New Jersey. 

Good’s father, an American anthropologist, had met his mother, then a member of the Yanomami Hasapuwe-teri community, while studying aspects of the group’s diet, Good says, adding: “He completely fell in love with this world.” 

But when his mother moved to New Jersey, she struggled to adapt. “We were just trying to live this intercultural, international lifestyle, with one foot in the jungle and one foot in the suburbs,” he says. 

Ultimately, Good stayed in the US with his father and siblings, while his mother moved back to be with the Yanomami. “That would be the last time I would see her for 20 years,” he says.

David taking a selfie with his mother and another young villager from inside a Yanomami dwelling
David Good visits his mother (behind) and other relatives in her village.
YANOMAMI FOUNDATION

In 2011, Good, who is now a microbiome researcher and PhD candidate at the University of Guelph, made the challenging and dangerous journey back to find his mother. 

His visits since have been about more than reestablishing family ties. 

On visits to his mother’s Yanomami community, he noticed an absence of chronic diseases—including mental-health disorders. “You don’t see depression; you don’t see PTSD,” he says. “The concept of suicide is just unfathomable to them.” 

He thinks that the Yanomami’s microbiomes might be benefiting their health, probably via their diet, which is free of sanitized and factory-processed foods. “The Yanomami don’t have the choice to eat bad food,” says Good. “Everything that they eat—whether it’s a monkey, capybara, or plantains—is all going to be good for their microbiome.”

Good supports the search for missing microbes in the guts of the Yanomami, but he stresses that any research should involve an exchange with the community. “[Scientists] can’t just parachute down and extract, and then leave,” he says. “Indigenous peoples are co-producers of knowledge, and their microbiome is not just sort of this passive thing that is there for us to take and leave.”

The Yanomami have had experiences similar to those of the Hadza. “They’re angry that scientists have come, taken their samples, and never come back,” says Good. The results of the research aren’t shared with them. And neither are any potential profits. 

He is working to redress that with the Yanomami Foundation, a nonprofit organization that aims to conduct ethical research with the Yanomami by seeking consent and addressing the wishes and needs of the community. 

“The microbes belong to David, essentially, and the Yanomami Foundation he’s started. Essentially we’re borrowing this stuff,” says Allen-Vercoe. “And the idea is that if we find something interesting that has some [intellectual property] … that will go to benefiting the Yanomami.”

gloved hands place a sample into a plastic holder that is resting on the ground
a person in a baseball cap collects a swab from the skin of Yarima while another researcher watches

The Yanomami Foundation collects samples from consenting villagers, including Yarima (above), with the understanding that the results and benefits will be shared with the Yanomami people.

The Yanomami want more resources for health care to help tackle the spread of diseases like malaria and tuberculosis. They want technology that allows them to follow news and communicate. And they want bilingual education, says Good. “The Yanomami people are not just, like, these passive animals in a zoo just to be observed,” he says. “They’re human beings; they want to engage with the outside world, and they want innovation.”

Larry Weiss, CEO of Symbiome, a company that sells cosmetic skin-care products, has been working with Good to study the skin microbiome of the Yanomami, which he describes as being “biologically intact.” “Things like acne, eczema, rosacea, and psoriasis don’t exist anywhere in hunter-gatherer populations,” Weiss says. He hopes that by learning more about the skin microbes of the Yanomami, he’ll be able to “restore health” in other populations.

Symbiome has paid for the genome sequencing of samples Good has collected from the Yanomami, says Weiss. The company has also “sustainably harvested” plants from an environment in Brazil similar to the one in which the Yanomami live. It sells a product made by adding microbes—some of which are found on the skin of Yanomami people—to fermented, ground-up rainforest plants. “A proportion of the profits go to supporting the Yanomami Foundation,” says Weiss. He won’t say what that proportion is.

Sharing the benefits

All of those MIT Technology Review spoke with agree that scientists need to make an effort to share their results with the communities they study. Sonnenburg hasn’t been to Tanzania himself, but he has sent infographics to help a colleague attempt to explain his research findings to the Hadza participants.

Everyone interviewed also wants to avoid engaging in biopiracy. “It’s the idea of industrialized nations going into low- and middle-income countries and taking advantage of their resources for their own gain,” says Sonnenburg. “Going into these areas that are under-resourced and taking from them, and not giving them ownership over these things that are coming from their people and their lands.”

infographic titled "Walimu Wahadzabe" in three parts.  The first part shows an indigenous person with vibrant dots on their belly to show a diversity of microbes, next to a person in a city environment with their dots looking less numerous and less colorful.  The second section shows the influence of diet on the dots, and the third section shows the influence of family on the dots.
Douglas chatting at the fire with the Hazda holding an infographic
a Hadza looking at the infographic
an infographic entitled "Binadamu na Wadudu na Vidudu."  The first section shows a person with a dot on their palm with a closeup of a nest of bees surrounded by dots.  The lower panels show the person, then the dots inside the gut, and a closeup of the dots eating pac-man style.

Naturalist and translator Douglas Symbeye shows members of the Hazda an infographic, to help explain the nature of the research.

“We are looking to extract species to better our own health without any return to the community,” says Crittenden. “If that’s not biopiracy, I don’t know what is.” Crittenden also uses the term “scientific colonialism.” “[It] often happens when elite groups—such as white American researchers—take resources from less influential communities,” she says.

“I’m the first to admit that I think I made a lot of mistakes, and I did things incorrectly,” adds Crittenden, who has worked with the Hadza since 2004.

Back in the early 2010s, she was performing cutting-edge research on the microbiomes of Hadza people. But an interview she conducted in 2013, with a woman who was holding her granddaughter under a tree, gave her pause. “She shared with me that she no longer wanted to participate in any work that required biological samples—saliva, breast milk, urine, blood, or feces,” says Crittenden. “She said that she was exhausted with all of the research teams that come in, do a project… don’t speak Swahili, don’t know the community … she was getting tired of giving parts of her body to strangers.”

Since then, Crittenden has changed the way she performs this research. “I now do exclusively community-based and community-inclusive work,” she says. Some of her recent work has focused on how Hadza children avoid harm, and on differences in emotion processing between the Hadza and people in the US. She no longer collects or studies biological samples, either.

“It’s important that we talk about the mistakes that we make, and that we are accountable for the ways in which we may misstep, albeit unintentionally,” she says. “We need to talk about the impact of our work, and not just our intention.”

Scientists who wish to perform research with the Hadza can apply for permits from the Tanzanian government. These permits explicitly state that researchers are not allowed to use their findings for commercial gain, says Sonnenburg.

But even if scientists themselves don’t use that knowledge to create a commercial product, there’s no guarantee that other companies won’t. “Even if you don’t engage personally in the commercial aspect of it, I still think you’re implicated in it,” says Good. “I feel that if we learn about the Yanomami gut microbiome, we publish on it, and then the private industry is going to learn from those publications how to remodel their products … that needs to be shared back to the Yanomami people.”

Mangola thinks that’s “a great idea,” and he hopes something similar can be put in place for the Hadza.

The best microbiome?

Even if these ethical problems are ever solved, scientific ones will endure. For a start, while we believe that microbial diversity is important, we haven’t firmly established anything other than a correlation between health and a more diverse microbiome. Is this diversity responsible for a lack of chronic disease, or is it a consequence of a particular diet that might not even benefit everyone in the same way? 

We know that antibiotics can disrupt our gut health. But the details of the link between microbial diversity and health are still largely a mystery. Even if you assume diversity is good, it’s not clear how much is needed—or what’s the best way to foster it. 

Not too long ago, the line of thinking was that the more diverse your diet, the better. Now Allen-Vercoe isn’t so sure. People who live in big cities have such a wide range of food options that they can eat a different meal every day of the month. But they are thought to have some of the “least healthy” microbiomes, she says.

And for all we know, people in industrialized societies may have lost microbes because they no longer serve any purpose in our diet. Maybe they would be likely to cause an infection. Maybe doing away with some of them is really no great loss after all. Maybe the rise of chronic illness is only correlated with the loss of microbial diversity, and other factors are responsible.

Because microbes evolve and adapt to their environments, we should expect the microbiomes of people who live in cities to look different from those of people who live in forests. “There is no archetypal microbiome that everyone should [aspire to],” says Good. “Your microbiome is a reflection of your intimate interaction with your surrounding ecosystem, including the foliage, the air, the water, the food—and that all plays a role in driving the diversity of the microbiome within your gut and on your skin.”

A Yanomami collecting water
A Yanomami community member collects water from the environment.
YANOMAMI FOUNDATION

Good says his friends have asked him for samples to give themselves transplants. “I’m like, are you kidding?” he says. “You can’t just wholesale transfer the microbiome of the Yanomami to a non-Yanomami and think you’re going to do well.”

Kostic doesn’t think it’s a good idea either, despite the concluding note in his paper. “I think there are dangers to it,” he says. “We don’t quite know how industrialized folks will respond to all of these microbes that we haven’t really seen … in our lifetimes.”

At any rate, hunter-gatherer societies are not definitive paragons of health. While people in these groups may have lower rates of chronic diseases than people in industrialized places, they experience higher rates of infectious diseases. And because of a lack of health care, those diseases are more likely to be fatal. “Hunter-gatherer communities have the highest rates of infant mortality,” adds Crittenden.

At the moment, the hunt for pristine microbiomes is a bit like a gold rush—one in which no one is sure what gold is, exactly, or whether it will ultimately prove valuable. Allen-Vercoe has spent years growing gut microbes in her lab to learn more about the chemicals they produce and how they might affect our health. She and her colleagues study collections of microbes in a bioreactor they call the Robogut, which is designed to simulate the conditions of human intestines. 

For all that work, she says, we have got a long way to go before we can start piecing together what a healthy microbiome looks like. “We still don’t know what a perfect microbiome is,” Allen-Vercoe says. Perhaps there is no such thing.

Read more
1 423 424 425 426 427 2,382