Ice Lounge Media

Ice Lounge Media

Was it too good to be true? Beeper, the startup that reverse-engineered iMessage to bring blue bubble texts to Android users, is experiencing an outage, the company reported via a post on X on Friday. And Apple is to blame, it seems. Users, including those of us at TechCrunch with access to the app, began […]

© 2023 TechCrunch. All rights reserved. For personal use only.

Read more

No one can predict the future, but  here at MIT Technology Review we spend much of our time thinking about what it might hold. One thing we know is that it’s especially hard to make predictions about technology. Most emerging technologies fizzle or flame out. Some start out as consumer devices but wind up finding their niche in more specialized applications. Only a few become household names. 

Each year, we put together a list of 10 Breakthrough Technologies, picking the advances that we think have the greatest potential to change our lives (for better or worse). We’ve done this for more than 20 years, and next month we’ll reveal our picks for the 2024 list. 

We haven’t always been right (RIP, Baxter), but we’ve often been early to spot important areas of progress (we put natural-language processing on our very first list in 2001; today this technology underpins large language models and generative AI tools like ChatGPT).  

Every year, our reporters and editors nominate technologies that they think deserve a spot, and we spend weeks debating which ones should make the cut. Here are some of the technologies we didn’t pick this time—and why we’ve left them off, for now. 

New drugs for Alzheimer’s disease

Alzmeiher’s patients have long lacked treatment options. Several new drugs have now been proved to slow cognitive decline, albeit modestly, by clearing out harmful plaques in the brain. In July, the FDA approved Leqembi by Eisai and Biogen, and Eli Lilly’s donanemab could soon be next. But the drugs come with serious side effects, including brain swelling and bleeding, which can be fatal in some cases. Plus, they’re hard to administer—patients receive doses via an IV and must receive regular MRIs to check for brain swelling. These drawbacks gave us pause. 

Sustainable aviation fuel 

Alternative jet fuels made from cooking oil, leftover animal fats, or agricultural waste could reduce emissions from flying. They have been in development for years, and scientists are making steady progress, with several recent demonstration flights. But production and use will need to ramp up significantly for these fuels to make a meaningful climate impact. While they do look promising, there wasn’t a key moment or “breakthrough” that merited a spot for sustainable aviation fuels on this year’s list.  

Solar geoengineering

One way to counteract global warming could be to release particles into the stratosphere that reflect the sun’s energy and cool the planet. That idea is highly controversial within the scientific community, but a few researchers and companies have begun exploring whether it’s possible by launching a series of small-scale high-flying tests. One such launch prompted Mexico to ban solar geoengineering experiments earlier this year. It’s not really clear where geoengineering will go from here or whether these early efforts will stall out. Amid that uncertainty, we decided to hold off for now. 

Male-male reproduction

In March, scientists announced that they had created healthy mouse pups by taking cells from two male mice and transforming some of those cells into eggs. The proof-of-concept study shows that this technique can enable reproduction between animals of the same sex, and possibly even allow animals to reproduce without a partner. The advance may someday allow same-sex reproduction in other animals, too—perhaps even humans. But testing something in mice is a long way from testing it in people, so we deferred. 

Over-the-counter Narcan

In March, the US FDA approved the first over-the-counter use of naloxone nasal spray, which reverses opioid overdoses. The spray is now sold by retailers nationwide, including CVS, Walgreens, and Walmart, where two doses cost about $45. Making this medicine more widely available without a prescription will undoubtedly save lives, given that opioid overdoses kill more than 80,000 Americans a year. But the real advance here, in our view, was a new distribution method rather than a scientific or technological breakthrough. 

So what did make our list? Well, you’ll have to come back in January to see. However, we did share one of our 2024 picks in advance with attendees at our recent EmTech MIT event in Cambridge, Massachusetts. Subscribers can watch a video of that special announcement. (Not a subscriber? Get access here.)

Read more

This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.

The lucky break behind the first CRISPR treatment

The world’s first commercial gene-editing treatment is set to start changing the lives of people with sickle-cell disease. It’s called Casgevy, and it was approved last month in the UK. US approval is pending this week.

The treatment, which will be sold in the US by Vertex Pharmaceuticals, employs CRISPR, which can be easily programmed by scientists to cut DNA at precise locations they choose.

But where do you aim CRISPR, and how did the researchers know what DNA to change? That’s the lesser-known story of the sickle-cell breakthrough, which doesn’t rely on fixing the genes responsible for the mutation that leaves patients’ hemoglobin molecules misshapen. Instead, it’s a kind of molecular bank shot—thankfully, one with a happy ending. Read the full story.

—Antonio Regalado

Read more about the sickle-cell breakthrough:

+ I received the new gene-editing drug for sickle cell disease. It changed my life. As a patient enrolled in a clinical trial for Vertex’s new exa-cel treatment, Jimi Olaghere was among the first to experience CRISPR’s transformative effects. Read the full story.

+ The first CRISPR cure might kick-start the next big patent battle. Vertex Pharmaceuticals plans to sell a gene-editing treatment for sickle-cell disease. A patent on CRISPR could stand in the way. Read the full story.

These robots know when to ask for help

The news: A new robot training model, dubbed “KnowNo,” aims to teach robots to ask for our help when orders are unclear. At the same time, it ensures they seek clarification only when necessary, minimizing needless back-and-forth. The result is a smart assistant that tries to make sure it understands what you want without bothering you too much.

Why it matters: While robots can be powerful in many specific scenarios, they are often bad at generalized tasks that require common sense. That’s something large language models could help to fix, because they have a lot of common-sense knowledge baked in. Read the full story.

—June Kim

Medical microrobots that travel inside the body are (still) on their way

The human body is a labyrinth of vessels and tubing, full of barriers that are difficult to break through. That poses a serious hurdle for doctors. Illness is often caused by problems that are hard to visualize and difficult to access. But imagine if we could deploy armies of tiny robots into the body to do the job for us. They could break up hard-to-reach clots, deliver drugs to even the most inaccessible tumors, and even help guide embryos toward implantation.

We’ve been hearing about the use of tiny robots in medicine for years, maybe even decades. And they’re still not here. But experts are adamant that medical microbots are finally coming, and that they could be a game changer for a number of serious diseases. Read the full story.

—Cassandra Willyard

This story is from The Checkup, our weekly biotech newsletter. Sign up to receive it in your inbox every Thursday.

The must-reads

I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

1 Use of deepfake pornography apps is soaring  
Links to the disturbing AI ‘nudifying’ services are rife on X and Reddit. (Bloomberg $)
+ The viral AI avatar app Lensa undressed me—without my consent. (MIT Technology Review)

2 TikTok is embarking on an anti-hate speech campaign
Spurred by the criticism the platform received over Israel-Hamas videos (The Information $)
+ TikTok’s algorithm means everyone’s feed is siloed, though. (The Verge)
+ The conflict has forced Meta’s oversight board to investigate two posts. (Wired $)
+ Republicans are repeating bogus claims to try and get TikTok banned. (Motherboard)

3 A major Abu Dhabi-based AI company is cutting ties with China
G42 is ditching its Chinese hardware contracts in favor of US suppliers. (FT $)

4 We’re learning more about how vaping affects us
It’s better than smoking. But that doesn’t mean it’s good for you, either. (New Scientist $)
+ Social media is full of posts promoting vaping to young users. (The Guardian)

5 The US wants to build the next revolutionary particle collider
But it could take years to get the project off the ground. (NYT $)

6 The Milky Way is likely to devour the galaxies surrounding it
It’s looking like dark matter could have something to do with it. (Ars Technica)

7 Our microbiomes aren’t diverse enough
And our sedentary lifetimes and antibiotics are to blame. (Proto.Life)
+ We’re learning a lot more about the vaginal microbiome. (Scientific American $)
+ How gene-edited microbiomes could improve our health. (MIT Technology Review)

8 Transparent wood is a promising plastic alternative
Smart windows and stronger phones are just a few applications. (Knowable Magazine)
+ Demand for rare-earth elements keeps growing and growing. (IEEE Spectrum)
+ Inside the quest to engineer climate-saving “super trees.” (MIT Technology Review)

9 A teenage girl’s rants turned her into a social media star
Evelyn hates people who don’t wash their hands, and the internet is riveted. (WP $)

10 China’s vertical videos are taking off in the US
A show about, err, billionaire werewolves in love is a major hit. (Rest of World)

Quote of the day

“If I was the government, I’d close it down.”

—Jamie Dimon, CEO of JPMorgan Chase, tells US senators why he’s no fan of crypto during a hearing, CoinDesk reports.

The big story

A plan to redesign the internet could make apps that no one controls

July 2020

Back in the early days of the accessible internet, many of its pioneers championed a free and open internet controlled by its users. Fast-forward a quarter-century and that vision feels naïve.

It’s clear that a desire for revolution is brewing, led in part by Dfinity, a non-profit building what it calls the internet computer, a decentralized technology that allows software to run anywhere on the internet rather than in server farms controlled by large firms.

But this desire for a rewilding of the internet is not about nostalgia. It’s about fighting back against the dominance of Big Tech, and mitigating the harms it’s inflicting on society. Read the full story.

—Will Douglas Heaven

We can still have nice things

A place for comfort, fun and distraction in these weird times. (Got any ideas? Drop me a line or tweet ’em at me.)

+ These olive oil cakes sound extremely tasty.
+ In this mom’s defense, Lord of the Rings is pretty long.
+ Let’s get into it—who really is the greatest guitarist of all time?
+ These snoozy tiger cubs are just too cute! 🐅
+ Meanwhile, here in the UK, we’ve discovered a frog that sounds like a duck.

Read more

Our new 2024 list of 10 Breakthrough Technologies won’t come out until January. But I recently gave attendees at EmTech MIT a sneak peek at one item that made the list—weight-loss drugs. Caroline Apovian, co-director of the Center for Weight Management and Wellness at Brigham and Women’s Hospital in Boston, Massachusetts, then joined me on stage to discuss what these new obesity treatments will mean for public health. You can watch that special announcement and our full discussion below.


Read more

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

The human body is a labyrinth of vessels and tubing, full of barriers that are difficult to break through. That poses a serious hurdle for doctors. Illness is often caused by problems that are hard to visualize and difficult to access. But imagine if we could deploy armies of tiny robots into the body to do the job for us. They could break up hard-to-reach clots, deliver drugs to even the most inaccessible tumors, and even help guide embryos toward implantation.

Okay, I know what you’re probably thinking. We’ve been hearing about the use of tiny robots in medicine for years, maybe even decades. And they’re still not here. Where are my medical microbots already?

They’re coming, says Brad Nelson, who works in robotics at ETH Zürich. Soon. And they could be a game changer for a number of serious diseases. In a perspective published in Science today, Nelson and his coauthor Salvador Pané argue that these tiny machines could help deliver drugs exactly where they are needed. That would help minimize toxicity. “So we can use stronger doses and maybe we can rethink the way we treat some of these diseases,” Nelson says.

What makes Nelson optimistic that these technologies are on their way? Some such robots have made their way off the lab bench and into large animals, including pigs. There are at least four startups working on medical microrobots that could travel “untethered” inside the body. One of these, Bionaut, raised $43 million earlier this year to take its therapy into phase 1 trials. It will use the money to develop devices about the size of a pencil tip that are designed to deliver drugs to the site of glioma brain tumors and pierce cysts that block the flow of spinal fluid in the brain, a symptom of a rare childhood disorder called Dandy-Walker syndrome.

“Microrobot” is a catch-all term covering robots that range in size from one micron (about 100th of the width of a human hair) up to a few millimeters in scale. If the robot is really tiny, smaller than a micron, it’s a nanorobot. And while it may be enticing to say “microbot” because it sounds really cool, that’s “more of a Hollywood kind of term,” Nelson says.

Microrobots can be composed of synthetic materials, biological materials (these are called biological robots or biobots), or both (biohybrid robots).  Many of them, including the ones that Nelson is developing, move thanks to magnets.

But others can move on their own. Last week a team of researchers from Tufts and Harvard reported that they had turned tracheal cells into biobots. The human trachea has waving cilia on the inside to catch microbes and debris. But these researchers encouraged the tracheal cells to form an organoid with the cilia on the outside. Depending on their shape and cilia coverage, the bots could travel in straight lines, turn circles, or wiggle. And—surprise twist—when the researchers scraped a metal rod across a layer of living neurons growing in a dish, the biobots swarmed the area and triggered new neurons to grow. “It is fascinating and completely unexpected that normal patient tracheal cells, without modifying their DNA, can move on their own and encourage neuron growth across a region of damage,” said Michael Levin, an engineer at Tufts  who led the work, in a press release. “We’re now looking at how the healing mechanism works, and asking what else these constructs can do.”

The potential usefulness of these microrobots is vast. “A lot of people are thinking about vascular diseases,” Nelson says. Microrobots could be injected and dissolve blood clots in the brain to treat stroke patients. Or they could shore up weak spots in vessels in the brain to prevent  them from bursting. They could deliver drugs to specific locations. And then there are weirder applications. Researchers at the University of Pennsylvania have developed bots that they hope might one day replace your toothbrush.

Other teams are working on bots that mimic—or are made from—sperm. Researchers have developed cow sperm covered in iron nanoparticles, called IRONSperm, that swim with the help of a rotating magnetic field; the hope is that they can be used for targeted drug delivery.  One team from Germany is working on microrobots that help with fertilization by delivering weakly swimming sperm to the egg. Their system even releases drugs to break down the egg’s hard coating. That same group also recently described how microrobots might be used in IVF. In a typical IVF procedure, an egg is fertilized outside the body, and the resulting embryo is transferred to the uterus. The procedure often fails. But if microbots could shuttle the embryo back to the fallopian tube or endometrium, the embryo could develop under more natural conditions, which might improve implantation rates. They envision microrobots guided by magnetic fields that could grip or carry an embryo, release it, and then degrade naturally.

Still, there are some substantial hurdles that the companies will have to overcome to use these bots in humans. Some are technical. “These are very tiny systems,” says Victoria Webster-Wood, a mechanical engineer at Carnegie Mellon University who develops biohybrid robots. And because of that, a bodily fluid like blood is actually relatively viscous. “So if the flow is moving really fast, it’s hard for the robot to go the other direction,” she says.

Other hurdles are regulatory. Microrobots qualify as medical devices, but they  may also be delivering a drug. “You’ve got what’s called the drug-device combination,” Nelson says. “While the drug might be well known, its concentration is going to be hopefully significantly different than normal.” That might mean regulators will want to see additional studies. 

Webster-Wood has been in the field for years, and she is excited that microrobots are finally getting attention. “Even in the last 10 years, it’s just grown so much,” she says. “I think there’s a lot more potential for actually translating.”

Another thing

This week the FDA is expected to approve Casgevy, the world’s first commercial gene-editing treatment, which treats sickle-cell disease. (The treatment was approved in the UK last month.) Antonio Regalado dug deep into the science behind the treatment for this story, which explains why sickle-cell was an ideal target for CRISPR’s big therapeutic debut. 

Read more from Tech Review’s archive

We’ve been thinking about microrobots and medical robots for years. Way back in 2011, Kristina Grifantini covered what was then one of the central puzzles: how to control them.

Earlier this year, Antonio Regalado reported on the first babies conceived with robots and the startups working to automate IVF. These weren’t microrobots, and the goal was mainly to achieve scale. “The main goal of automating IVF, say entrepreneurs, is simple: it’s to make a lot more babies.”

Victoria Webster-Wood, who makes biohybrid robots, and Renee Zhao, who makes millimeter-scale medical robots both made this year’s Tech Review 35 Innovators Under 35 list

From around the web

Brain implants helped five people with moderate to severe brain injuries perform 15% to 52% better on cognitive tests. If the results hold up in a larger study, brain stimulation may become the first therapy for traumatic brain injury. (NYT)

Last week the FDA announced that the agency was investigating a possible link between CAR-T therapy and cancer. If CAR-T can cause secondary cancers, it would be a rare occurrence, experts say. (STAT $)

Vets are on a quest to pinpoint the cause of a mysterious respiratory illness that has sickened hundreds of dogs in the US. (Wired $)

The surge in respiratory illness among kids in China is likely the result of a lengthy lockdown, not a new pathogen, as some Republican lawmakers have claimed. (NYT)

Read more

There are two bowls on the kitchen table: one made of plastic, the other metal. You ask the robot to pick up the bowl and put it in the microwave. Which one will it choose?

A human might ask for clarification, but given the vague command, the robot may place the metal bowl in the microwave, causing sparks to fly.

A new training model, dubbed “KnowNo,” aims to address this problem by teaching robots to ask for our help when orders are unclear. At the same time, it ensures they seek clarification only when necessary, minimizing needless back-and-forth. The result is a smart assistant that tries to make sure it understands what you want without bothering you too much.

Andy Zeng, a research scientist at Google DeepMind who helped develop the new technique, says that while robots can be powerful in many specific scenarios, they are often bad at generalized tasks that require common sense.

For example, when asked to bring you a Coke, the robot needs to first understand that it needs to go into the kitchen, look for the refrigerator, and open the fridge door. Conventionally, these smaller substeps had to be manually programmed, because otherwise the robot would not know that people usually keep their drinks in the kitchen.

That’s something large language models (LLMs) could help to fix, because they have a lot of common-sense knowledge baked in, says Zeng. 

Now when the robot is asked to bring a Coke, an LLM, which has a generalized understanding of the world, can generate a step-by-step guide for the robot to follow.

The problem with LLMs, though, is that there’s no way to guarantee that their instructions are possible for the robot to execute. Maybe the person doesn’t have a refrigerator in the kitchen, or the fridge door handle is broken. In these situations, robots need to ask humans for help.

KnowNo makes that possible by combining large language models with statistical tools that quantify confidence levels. 

When given an ambiguous instruction like “Put the bowl in the microwave,” KnowNo first generates multiple possible next actions using the language model. Then it creates a confidence score predicting the likelihood that each potential choice is the best one.

These confidence estimates are sized up against a predetermined certainty threshold, which indicates exactly how confident or conservative the user wants a robot to be in its actions. For example, a robot with a success rate of 80% should make the correct decision at least 80% of the time.

This is useful in situations with varying degrees of risk, says Anirudha Majumdar, an assistant professor of mechanical and aerospace engineering at Princeton and the senior author of the study. 

You may want your cleaning robot to be more independent, despite a few mistakes here and there, so that you don’t have to supervise it too closely. But for medical applications, robots must be extremely cautious, with the highest level of success possible.

When there is more than one option for how to proceed, the robot pauses to ask for clarification instead of blindly continuing: “Which bowl should I pick up—the metal or the plastic one?”

KnownNo was tested on three robots in more than 150 different scenarios. Results showed that KnowNo-trained robots had more consistent success rates while needing less human assistance than those trained without the same statistical calculations. The paper describing the research was presented at the Conference on Robot Learning in November.

Because human language is often ambiguous, teaching robots to recognize and respond to uncertainty can improve their performance.

Studies show that people prefer robots that ask questions, says Dylan Losey, an assistant professor at Virginia Tech who specializes in human-robot interaction and was not involved in this research. When robots reach out for help, it increases transparency about how they’re deciding what to do, which leads to better interactions, he says. 

Allen Ren, a PhD student at Princeton and the study’s lead author, says there are several ways to improve KnowNo. Right now, it assumes robots’ vision is always reliable, which may not be the case with faulty sensors. Also, the model can be updated to factor in potential errors coming from human help.

AI’s ability to express uncertainty will make us trust robots more, says Majumdar. “Quantifying uncertainty is a missing piece in a lot of our systems,” he says. “It allows us to be more confident about how safe and successful the robots will be.”

Read more
1 442 443 444 445 446 2,382